General Overview


Logo

This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Holger Metzler (Orcid ID: 0000-0002-8239-1601) on 09/03/2016, and was last modified on lm.

About the model

The model depicted in this document considers soil organic matter decomposition. It was originally described by Hénin & Dupuis (1945).

Keywords

differential equations, linear, time invariant, analytic

Principles

mass balance, substrate dependence of decomposition, heterogeneity of speed of decay, internal transformations of organic matter

State Variables

The following table contains the available information regarding this section:

Information on State Variables
Name Description Units
\(A\) labile pool \(MgC\cdot ha^{-1}\)
\(B\) stable pool \(MgC\cdot ha^{-1}\)

Decomposition Rates

The following table contains the available information regarding this section:

Information on Decomposition Rates
Name Description Type Units
\(\alpha\) annual decomposition rate of labile pool parameter \(yr^{-1}\)
\(\beta\) annual decomposition rate of stable pool parameter \(yr^{-1}\)

Input Components

The following table contains the available information regarding this section:

Information on Input Components
Name Description Type Units
\(m\) annual organic matter input parameter \(MgC yr^{-1}\)

Transfer Coefficients

The following table contains the available information regarding this section:

Information on Transfer Coefficients
Name Description Type
\(K\) isohumic coefficient parameter

Components

The following table contains the available information regarding this section:

Information on Components
Name Description Expressions
\(C\) carbon content \(C=\left[\begin{matrix}A\\B\end{matrix}\right]\)
\(I\) input vector \(I=\left[\begin{matrix}m\\0\end{matrix}\right]\)
\(A_{GeM}\) decomposition operator \(A_{GeM}=\left[\begin{matrix}-\alpha & 0\\K\cdot\alpha & -\beta\end{matrix}\right]\)
\(f_{s}\) the right hand side of the ode \(f_{s}=I+A_{GeM}\,C\)

Pool model representation

Flux description

Figure 1
Figure 1: Pool model representation

Input fluxes

\(A: m\)

Output fluxes

\(A: A\cdot\alpha\cdot\left(- K + 1\right)\)
\(B: B\cdot\beta\)

Internal fluxes

\(A > B: A\cdot K\cdot\alpha\)

The right hand side of the ODE

\(\left[\begin{matrix}- A\cdot\alpha + m\\A\cdot K\cdot\alpha - B\cdot\beta\end{matrix}\right]\)

The Jacobian (derivative of the ODE w.r.t. state variables)

\(\left[\begin{matrix}-\alpha & 0\\K\cdot\alpha & -\beta\end{matrix}\right]\)

Steady state formulas

\(A = \frac{m}{\alpha}\)
\(B = \frac{K}{\beta}\cdot m\)

References

Hénin, S., & Dupuis, M. (1945). Essai de bilan de la matière organique du sol. In Annales agronomiques (Vol. 15, pp. 17–29).