General Overview


Logo

This report is the result of the use of the Python 3.4 package Sympy (for symbolic mathematics), as means to translate published models to a common language. It was created by Holger Metzler (Orcid ID: 0000-0002-8239-1601) on 10/03/2016, and was last modified on lm.

About the model

The model depicted in this document considers soil organic matter decomposition. It was originally described by D. S. Jenkinson & Rayner (1977).

Abstract

Data are assembled from the Rothamsted classical field experiments on the effects of long-continued cropping and manuring on the amount of organic matter in soil, on the age of this soil organic matter, on the amount of microbial biomass in the soil, and on the rate at which plant residues decompose in these soils. These data were then fitted to a model in which soil organic matter was separated into five compartments: decomposable plant material (DPM, half-life 0.165 years); resistant plant material (RPM, 2.31 years); soil biomass (BIO, 1.69 years); physically stabilized organic matter (POM, 49.5 years) and chemically stabilized organic matter (COM, 1980 years). For unitary input of plant material (1 t fresh plant \(C ha^{-1} year^{-1}\)) under steady-state conditions, after 10,000 years, the model predicts that the soil will contain 0.01 t C in DPM, 0.47 t in RPM, 0.28 t in BIO, 11.3 t in POM, and 12.2 t in COM. The predicted radiocarbon age is 1240 years (equivalent age). The fit between predicted and measured data is sufficiently good to suggest that the model is a useful representation of the turnover of organic matter in cropped soils.

Keywords

differential equations, linear, time variant

Principles

mass balance, substrate dependence of decomposition, heterogeneity of speed of decay, internal transformations of organic matter, environmental variability effects

Space Scale

plot, field, catchment, regional, national, global

Available parameter values

Information on given parameter sets
Abbreviation Description Source
Set1 original values without effects of temperature and soil moisture Coleman & Jenkinson (1996)

State Variables

The following table contains the available information regarding this section:

Information on State Variables
Name Description Units
\(C_{1}\) decomposable plant material pool (DPM) \(t C\cdot ha^{-1}\)
\(C_{2}\) resistant plant material pool (RPM) \(t C\cdot ha^{-1}\)
\(C_{3}\) microbial biomass pool (BIO) \(t C\cdot ha^{-1}\)
\(C_{4}\) humified organic matter pool (HUM) \(t C\cdot ha^{-1}\)
\(C_{5}\) inert organic matter pool (IOM) \(t C\cdot ha^{-1}\)

Decomposition Rates

The following table contains the available information regarding this section:

Information on Decomposition Rates
Name Description Type Units Values

Set1
\(k_{1}\) decomposition rate of DPM parameter \(yr^{-1}\) \(10\)
\(k_{2}\) decomposition rate of RPM parameter \(yr^{-1}\) \(0.3\)
\(k_{3}\) decomposition rate of BIO parameter \(yr^{-1}\) \(0.66\)
\(k_{4}\) decomposition rate of HUM parameter \(yr^{-1}\) \(0.02\)

Additional Parameters

The following table contains the available information regarding this section:

Information on Additional Parameters
Name Description Type Values

Set1
\(pClay\) percentage of clay in mineral soil parameter \(23.4\)
\(DR\) ratio of DPM to RPM parameter \(1.44\)

Auxiliary Variables

The following table contains the available information regarding this section:

Information on Auxiliary Variables
Name Description Expressions Values

Set1
\(x\) CO\(_2\) to (BIO+HUM) ratio \(x=1.67\,\left(1.85+1.6\,\operatorname{exp}\left(- 0.0786\,pClay\right)\right)\) -
\(\gamma\) litter input partitioning coefficient \(\gamma=\frac{DR}{1+DR}\) -

Input Components

The following table contains the available information regarding this section:

Information on Input Components
Name Description Type Units Values

Set1
\(J\) mean annual carbon input parameter \(t C ha^{-1}yr^{-1}\) \(1.7\)

Transfer Coefficients

The following table contains the available information regarding this section:

Information on Transfer Coefficients
Name Description Expressions Values

Set1
\(a\) flux coefficient to BIO \(a=\frac{0.46}{1+x}\) -
\(b\) flux coefficient to HUM \(b=\frac{0.54}{1+x}\) -

Environmental Coefficients

The following table contains the available information regarding this section:

Information on Environmental Coefficients
Name Description Values

Set1
\(f_{T}\) function of temperature -
\(f_{W}\) function of soil moisture -

Components

The following table contains the available information regarding this section:

Information on Components
Name Description Expressions
\(C\) carbon content \(C=\left[\begin{matrix}C_{1}\\C_{2}\\C_{3}\\C_{4}\\C_{5}\end{matrix}\right]\)
\(I\) input vector \(I=\left[\begin{matrix}J\cdot\gamma\\J\cdot\left(-\gamma + 1\right)\\0\\0\\0\end{matrix}\right]\)
\(\xi\) environmental effects multiplier \(\xi=f_{T}\,f_{W}\)
\(A\) decomposition operator \(A=\left[\begin{matrix}- k_{1} & 0 & 0 & 0 & 0\\0 & - k_{2} & 0 & 0 & 0\\a\cdot k_{1} & a\cdot k_{2} & a\cdot k_{3} - k_{3} & a\cdot k_{4} & 0\\b\cdot k_{1} & b\cdot k_{2} & b\cdot k_{3} & b\cdot k_{4} - k_{4} & 0\\0 & 0 & 0 & 0 & 0\end{matrix}\right]\)
\(f_{s}\) the right hand side of the ode \(f_{s}=I+\xi\,A\,C\)

Pool model representation

Flux description

Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{1}: \frac{DR\cdot J}{DR + 1}\)
\(C_{2}: J\cdot\left(-\frac{DR}{DR + 1} + 1\right)\)

Output fluxes

\(C_{1}: \frac{C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\cdot\left(3.0895\cdot e^{0.0786\cdot pClay} + 2.672\right)\)
\(C_{2}: \frac{C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\cdot\left(3.0895\cdot e^{0.0786\cdot pClay} + 2.672\right)\)
\(C_{3}: \frac{C_{3}\cdot f_{T}\cdot f_{W}\cdot k_{3}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\cdot\left(3.0895\cdot e^{0.0786\cdot pClay} + 2.672\right)\)
\(C_{4}: \frac{C_{4}\cdot f_{T}\cdot f_{W}\cdot k_{4}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\cdot\left(3.0895\cdot e^{0.0786\cdot pClay} + 2.672\right)\)

Internal fluxes

\(C_{1} > C_{3}: \frac{0.46\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)
\(C_{1} > C_{4}: \frac{0.54\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)
\(C_{2} > C_{3}: \frac{0.46\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)
\(C_{2} > C_{4}: \frac{0.54\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)
\(C_{3} > C_{4}: \frac{0.54\cdot C_{3}\cdot f_{T}\cdot f_{W}\cdot k_{3}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)
\(C_{4} > C_{3}: \frac{0.46\cdot C_{4}\cdot f_{T}\cdot f_{W}\cdot k_{4}\cdot e^{0.0786\cdot pClay}}{4.0895\cdot e^{0.0786\cdot pClay} + 2.672}\)

The right hand side of the ODE

\(\left[\begin{matrix}- C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1} +\frac{DR\cdot J}{DR + 1}\\- C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2} + J\cdot\left(-\frac{DR}{DR + 1} + 1\right)\\\frac{0.46\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.46\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} + C_{3}\cdot f_{T}\cdot f_{W}\cdot\left(- k_{3} +\frac{0.46\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) +\frac{0.46\cdot C_{4}\cdot f_{T}\cdot f_{W}\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\\\frac{0.54\cdot C_{1}\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.54\cdot C_{2}\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} +\frac{0.54\cdot C_{3}\cdot f_{T}\cdot f_{W}\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} + C_{4}\cdot f_{T}\cdot f_{W}\cdot\left(- k_{4} +\frac{0.54\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right)\\0\end{matrix}\right]\)

The Jacobian (derivative of the ODE w.r.t. state variables)

\(\left[\begin{matrix}- f_{T}\cdot f_{W}\cdot k_{1} & 0 & 0 & 0 & 0\\0 & - f_{T}\cdot f_{W}\cdot k_{2} & 0 & 0 & 0\\\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & f_{T}\cdot f_{W}\cdot\left(- k_{3} +\frac{0.46\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) &\frac{0.46\cdot f_{T}\cdot f_{W}\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & 0\\\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{1}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{2}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} &\frac{0.54\cdot f_{T}\cdot f_{W}\cdot k_{3}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895} & f_{T}\cdot f_{W}\cdot\left(- k_{4} +\frac{0.54\cdot k_{4}}{2.672\cdot e^{- 0.0786\cdot pClay} + 4.0895}\right) & 0\\0 & 0 & 0 & 0 & 0\end{matrix}\right]\)

Steady state formulas

\(C_{1} = \frac{DR\cdot J}{f_{T}\cdot f_{W}\cdot k_{1}\cdot\left(DR + 1.0\right)}\)
\(C_{2} = \frac{J}{f_{T}\cdot f_{W}\cdot k_{2}\cdot\left(DR + 1.0\right)}\)
\(C_{3} = \frac{5.50898203592814\cdot J\cdot\left(4.35845179839506\cdot 10^{18}\cdot e^{0.0786\cdot pClay} + 3.26027527396786\cdot 10^{19}\cdot e^{0.1572\cdot pClay} + 9.75003544221277\cdot 10^{19}\cdot e^{0.2358\cdot pClay} + 1.45709229508337\cdot 10^{20}\cdot e^{0.3144\cdot pClay} + 1.08814080708274\cdot 10^{20}\cdot e^{0.393\cdot pClay} + 3.24846079083974\cdot 10^{19}\cdot e^{0.4716\cdot pClay}\right)}{f_{T}\cdot f_{W}\cdot k_{3}\cdot\left(1.20455080421033\cdot 10^{21}\cdot e^{0.0786\cdot pClay} + 4.32631319287619\cdot 10^{21}\cdot e^{0.1572\cdot pClay} + 8.2702084578855\cdot 10^{21}\cdot e^{0.2358\cdot pClay} + 8.87329207447322\cdot 10^{21}\cdot e^{0.3144\cdot pClay} + 5.06562843927484\cdot 10^{21}\cdot e^{0.393\cdot pClay} + 1.20193049261071\cdot 10^{21}\cdot e^{0.4716\cdot pClay} + 1.39470457548642\cdot 10^{20}\right)}\)
\(C_{4} = \frac{6.46706586826347\cdot J\cdot\left(152615747584.0\cdot e^{0.0786\cdot pClay} + 700735890432.0\cdot e^{0.1572\cdot pClay} + 1072477329312.0\cdot e^{0.2358\cdot pClay} + 547142719339.0\cdot e^{0.3144\cdot pClay}\right)}{f_{T}\cdot f_{W}\cdot k_{4}\cdot\left(28070331154432.0\cdot e^{0.0786\cdot pClay} + 60246502483968.0\cdot e^{0.1572\cdot pClay} + 57190228203392.0\cdot e^{0.2358\cdot pClay} + 20244280615543.0\cdot e^{0.3144\cdot pClay} + 4883703922688.0\right)}\)
\(C_{5} = C_{5}\)

Steady states (potentially incomplete), according jacobian eigenvalues, damping ratio

Parameter set: Set1

\(C_1: \frac{0.100327868852459}{f_{T}\cdot f_{W}}\), \(C_2: \frac{2.3224043715847}{f_{T}\cdot f_{W}}\), \(C_3: \frac{0.337161881627308}{f_{T}\cdot f_{W}}\), \(C_4: \frac{13.061358109997}{f_{T}\cdot f_{W}}\), \(C_5: C_{5}\)

\(\lambda_{1}: 0\)
\(\lambda_{2}: - 0.01733\cdot f_{T}\cdot f_{W}\)
\(\lambda_{3}: - 0.593\cdot f_{T}\cdot f_{W}\)
\(\lambda_{4}: - 10.0\cdot f_{T}\cdot f_{W}\)
\(\lambda_{5}: - 0.3\cdot f_{T}\cdot f_{W}\)

References

Coleman, K., & Jenkinson, D. S. (1996). Evaluation of soil organic matter models: Using existing long-term datasets. In (pp. 237–246). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-61094-3_17

Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical expermiments. Soil Science, 123(5), 298–305. http://doi.org/10.1097/00010694-197705000-00005