| Model | # Variables | # Parameters | # Constants | Structure | Right hand side of ODE | Source | |
|---|---|---|---|---|---|---|---|
|
|
AWB | 11 | 16 | \(f_{s}=I+T_{M}\,N\,C\) | Allison, Wallenstein, & Bradford (2010) | ||
|
|
ICBM | 2 | 5 | \(f_{s}=I+\xi\,T\,N\,C\) | Andrén & Kätterer (1997) | ||
|
|
FB2005 (4) | 5 | 12 | \(f_{s}=I+A_{GM}\,C\) | Fontaine & Barot (2005) | ||
|
|
HD-1945 | 2 | 4 | \(f_{s}=I+A_{GeM}\,C\) | Hénin & Dupuis (1945) | ||
|
|
RothC-26.3 | 5 | 7 | \(f_{s}=I+\xi\,A\,C\) | Jenkinson & Rayner (1977) | ||
|
|
Century | 9 | 13 | \(f_{s}=I+\xi\,A\,C\) | Parton, Schimel, Cole, & Ojima (1987) | ||
|
|
Exoenzyme | 4 | 7 | \(f_{s}=T\,N\,C\) | J. P. Schimel & Weintraub (2003) | ||
|
|
Exoenzyme rMM | 4 | 8 | \(f_{s}=T\,N\,C\) | J. P. Schimel & Weintraub (2003) | ||
|
|
Exoenzyme rMM+ | 4 | 8 | \(f_{s}=T\,N\,C\) | J. P. Schimel & Weintraub (2003) | ||
|
|
MEND | 7 | 19 | \(f_{s}=I+T\,N\,C\) | Wang, Post, & Mayes (2013) | ||
|
|
BACWAVE | 5 | 10 | \(f_{s}=I+T\,N\,C\) | Zelenev, van Bruggen, & Semenov (2000) |
Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3(5), 336–340. http://doi.org/10.1038/ngeo846
Andrén, O., & Kätterer, T. (1997). ICBM: The introductory carbon balance model for exploration of soil carbon balances. Ecological Applications, 7(4), 1226–1236.
Fontaine, S., & Barot, S. (2005). Size and functional diversity of microbe populations control plant persistence and long‐term soil carbon accumulation. Ecology Letters, 8(10), 1075–1087. http://doi.org/10.1111/j.1461-0248.2005.00813.x
Hénin, S., & Dupuis, M. (1945). Essai de bilan de la matière organique du sol. In Annales agronomiques (Vol. 15, pp. 17–29).
Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical expermiments. Soil Science, 123(5), 298–305. http://doi.org/10.1097/00010694-197705000-00005
Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J., 51(5), 1173–1179. http://doi.org/10.2136/sssaj1987.03615995005100050015x
Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 35(4), 549–563.
Wang, G., Post, W. M., & Mayes, M. A. (2013). Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications, 23(1), 255–272. http://doi.org/10.1890/12-0681.1
Zelenev, V. V., van Bruggen, A. H. C., & Semenov, A. M. (2000). “BACWAVE,” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil. Microbial Ecology, 40(3), 260–272. http://doi.org/10.2307/4251775