Overview of the models

Model # Variables # Parameters # Constants Structure Right hand side of ODE Source
CTEM 23 23 \(f_{v}=I+O+R\) Arora & Boer (2005)
IBIS 5 3 \(f_{v}=u\,b+A\,x\) Castanho et al. (2013)
G'DAY 4 6 \(f_{v}=u\,b+A\,x\) Comins & McMurtrie (1993)
DeAngelis2012TheoreticalEcology 11 17 \(f_{v}=u\,b+A\,x\) DeAngelis, Ju, Liu, Bryant, & Gourley (2012)
IBIS 4 6 \(f_{v}=u\,b+A\,x\) Foley et al. (1996)
Hilbert1991Annals_of_Botany 17 14 \(f_{v}=Inp+T\,N_{gm}\,x\) Hilbert & Reynolds (1991)
King1993TreePhysiology 4 8 \(f_{v}=u\,b+A\,x\) King (1993)
Luo2012TE 9 7 \(f_{v}=u\,b+A\,x\) Luo, Weng, & Yang (n.d.)
Murty2000EcologicalModelling 15 12 \(f_{v}=u\,b+A\,x\) Murty & McMurtrie (2000)
CASA 8 6 \(f_{v}=u\,b+A\,x\) Potter & Randerson (1993)
FOREST-BGC 3 6 \(f_{v}=u\,b+A\,x\) Running & Coughlan (1988)
ACONITE 36 2 \(f_{v}=I+O+R\) Thomas & Williams (2014)
VanDerWerf1993PlantandSoil 6 12 \(f_{v}=u\cdot x_{0, 0} c b + A c x\) Van Der Werf, Enserink, Smit, & Booij (1993)
CABLE 10 16 \(f_{v}=u\,b+A\,x\) Wang, Law, & Pak (2010)

Figures


Figure 1
Figure 1: Histograms, # variables

Figure 4
Figure 4: # variables & parameters

Figure 4b
Figure 4b: # variables & # operations

Figure 5
Figure 5: # variables & cascading depth of operations

Figure 6
Figure 6: cascading depth and # operations

Figure 7
Figure 7: Type of carbon partitioning scheme among pools and # operations

Bibliography

Arora, V. K., & Boer, G. J. (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11(1), 39–59. http://doi.org/10.1111/j.1365-2486.2004.00890.x

Castanho, A. D. A., Coe, M. T., Costa, M. H., Malhi, Y., Galbraith, D., & Quesada, C. A. (2013). Improving simulated amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 10(4), 2255–2272. http://doi.org/10.5194/bg-10-2255-2013

Comins, H. N., & McMurtrie, R. E. (1993). Long-term response of nutrient-limited forests to CO\(_2\) enrichment; equilibrium behavior of plant-soil models. Ecological Applications, 3(4), 666–681.

DeAngelis, D. L., Ju, S., Liu, R., Bryant, J. P., & Gourley, S. A. (2012). Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability. Theoretical Ecology, 5(3), 445–456. http://doi.org/10.1007/s12080-011-0135-z

Foley, J. A., Prentice, I. C., Ramankutty, N., Lewis, S., Pollard, D., Sitch, S., & Haxeltine, A. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628. http://doi.org/10.1029/96GB02692

Hilbert, D. W., & Reynolds, J. F. (1991). A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Annals of Botany, 68(5), 417–425.

King, D. A. (1993). A model analysis of the influence of root and foliage allocation on forest production and competition between trees. Tree Physiology, 12(2), 119–135. http://doi.org/10.1093/treephys/12.2.119

Luo, Y., Weng, E., & Yang, Y. (n.d.). Ecosystem ecology. In A. Hastings & L. Gross (Eds.), Encyclopedia of theoretical ecology (pp. 219–229). Berkeley: University of California Press.

Murty, D., & McMurtrie, R. E. (2000). The decline of forest productivity as stands age: A model-based method for analysing causes for the decline. Ecological Modelling, 134(2-3), 185–205. http://doi.org/10.1016/S0304-3800(00)00345-8

Potter, C. S. C., & Randerson, J. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4), 811–841. http://doi.org/10.1029/93GB02725

Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications i. hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125–154. http://doi.org/10.1016/0304-3800(88)90112-3

Thomas, R. Q., & Williams, M. (2014). A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (aCONITE version 1). Geoscientific Model Development, 7(5), 2015–2037. http://doi.org/10.5194/gmd-7-2015-2014

Van Der Werf, A., Enserink, T., Smit, B., & Booij, R. (1993). Allocation of carbon and nitrogen as a function of the internal nitrogen status of a plant: Modelling allocation under non-steady-state situations. Plant and Soil, 155-156(1), 183–186. http://doi.org/10.1007/BF00025014

Wang, Y. P., Law, R. M., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261–2282. http://doi.org/10.5194/bg-7-2261-2010