| Model | # Variables | # Parameters | # Constants | Structure | Right hand side of ODE | Source | |
|---|---|---|---|---|---|---|---|
| CTEM | 23 | 23 | \(f_{v}=I+O+R\) | Arora & Boer (2005) | |||
|
|
IBIS | 5 | 3 | \(f_{v}=u\,b+A\,x\) | Castanho et al. (2013) | ||
|
|
G'DAY | 4 | 6 | \(f_{v}=u\,b+A\,x\) | Comins & McMurtrie (1993) | ||
|
|
DeAngelis2012TheoreticalEcology | 11 | 17 | \(f_{v}=u\,b+A\,x\) | DeAngelis, Ju, Liu, Bryant, & Gourley (2012) | ||
|
|
IBIS | 4 | 6 | \(f_{v}=u\,b+A\,x\) | Foley et al. (1996) | ||
|
|
Hilbert1991Annals_of_Botany | 17 | 14 | \(f_{v}=Inp+T\,N_{gm}\,x\) | Hilbert & Reynolds (1991) | ||
|
|
King1993TreePhysiology | 4 | 8 | \(f_{v}=u\,b+A\,x\) | King (1993) | ||
|
|
Luo2012TE | 9 | 7 | \(f_{v}=u\,b+A\,x\) | Luo, Weng, & Yang (n.d.) | ||
|
|
Murty2000EcologicalModelling | 15 | 12 | \(f_{v}=u\,b+A\,x\) | Murty & McMurtrie (2000) | ||
|
|
CASA | 8 | 6 | \(f_{v}=u\,b+A\,x\) | Potter & Randerson (1993) | ||
|
|
FOREST-BGC | 3 | 6 | \(f_{v}=u\,b+A\,x\) | Running & Coughlan (1988) | ||
| ACONITE | 36 | 2 | \(f_{v}=I+O+R\) | Thomas & Williams (2014) | |||
| VanDerWerf1993PlantandSoil | 6 | 12 | \(f_{v}=u\cdot x_{0, 0} c b + A c x\) | Van Der Werf, Enserink, Smit, & Booij (1993) | |||
|
|
CABLE | 10 | 16 | \(f_{v}=u\,b+A\,x\) | Wang, Law, & Pak (2010) |
Arora, V. K., & Boer, G. J. (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11(1), 39–59. http://doi.org/10.1111/j.1365-2486.2004.00890.x
Castanho, A. D. A., Coe, M. T., Costa, M. H., Malhi, Y., Galbraith, D., & Quesada, C. A. (2013). Improving simulated amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 10(4), 2255–2272. http://doi.org/10.5194/bg-10-2255-2013
Comins, H. N., & McMurtrie, R. E. (1993). Long-term response of nutrient-limited forests to CO\(_2\) enrichment; equilibrium behavior of plant-soil models. Ecological Applications, 3(4), 666–681.
DeAngelis, D. L., Ju, S., Liu, R., Bryant, J. P., & Gourley, S. A. (2012). Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability. Theoretical Ecology, 5(3), 445–456. http://doi.org/10.1007/s12080-011-0135-z
Foley, J. A., Prentice, I. C., Ramankutty, N., Lewis, S., Pollard, D., Sitch, S., & Haxeltine, A. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628. http://doi.org/10.1029/96GB02692
Hilbert, D. W., & Reynolds, J. F. (1991). A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Annals of Botany, 68(5), 417–425.
King, D. A. (1993). A model analysis of the influence of root and foliage allocation on forest production and competition between trees. Tree Physiology, 12(2), 119–135. http://doi.org/10.1093/treephys/12.2.119
Luo, Y., Weng, E., & Yang, Y. (n.d.). Ecosystem ecology. In A. Hastings & L. Gross (Eds.), Encyclopedia of theoretical ecology (pp. 219–229). Berkeley: University of California Press.
Murty, D., & McMurtrie, R. E. (2000). The decline of forest productivity as stands age: A model-based method for analysing causes for the decline. Ecological Modelling, 134(2-3), 185–205. http://doi.org/10.1016/S0304-3800(00)00345-8
Potter, C. S. C., & Randerson, J. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4), 811–841. http://doi.org/10.1029/93GB02725
Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications i. hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125–154. http://doi.org/10.1016/0304-3800(88)90112-3
Thomas, R. Q., & Williams, M. (2014). A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (aCONITE version 1). Geoscientific Model Development, 7(5), 2015–2037. http://doi.org/10.5194/gmd-7-2015-2014
Van Der Werf, A., Enserink, T., Smit, B., & Booij, R. (1993). Allocation of carbon and nitrogen as a function of the internal nitrogen status of a plant: Modelling allocation under non-steady-state situations. Plant and Soil, 155-156(1), 183–186. http://doi.org/10.1007/BF00025014
Wang, Y. P., Law, R. M., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261–2282. http://doi.org/10.5194/bg-7-2261-2010